arctanx的導(dǎo)數(shù):y=arctanx,x=tany,dx/dy=sec²y=tan²y+1,dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²)。


(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
如果函數(shù)x=f(y)x=f(y)在區(qū)間IyIy內(nèi)單調(diào)、可導(dǎo)且f′(y)≠0f′(y)≠0,那么它的反函數(shù)y=f−1(x)y=f−1(x)在區(qū)間Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}內(nèi)也可導(dǎo),且
[f−1(x)]′=1f′(y)或dydx=1dxdy
[f−1(x)]′=1f′(y)或dydx=1dxdy
這個(gè)結(jié)論可以簡單表達(dá)為:反函數(shù)的導(dǎo)數(shù)等于直接函數(shù)導(dǎo)數(shù)的倒數(shù)。
例:設(shè)x=siny,y∈[−π2,π2]x=sin?y,y∈[−π2,π2]為直接導(dǎo)數(shù),則y=arcsinxy=arcsin?x是它的反函數(shù),求反函數(shù)的導(dǎo)數(shù).
解:函數(shù)x=sinyx=sin?y在區(qū)間內(nèi)單調(diào)可導(dǎo),f′(y)=cosy≠0f′(y)=cos?y≠0
因此,由公式得
(arcsinx)′=1(siny)′
(arcsin?x)′=1(sin?y)′
=1cosy=11−sin2y−−−−−−−−√=11−x2−−−−−√
=1cos?y=11−sin2?y=11−x2